Professeur : Rachid BELEMOU

: Prince Moulay Abdellah

FONCTIONS EXPO

Niveau: 2 BAC-PC-SVT

Année : 2022-2023

La fonction exponentielle népérienne $f(x) = e^x$:

a. Activité:

Lycée

On considère la fonction f définie par : $\begin{cases} f :]0, +\infty[\to \mathbb{R} \\ x \mapsto f(x) = \ln x \end{cases}$

1. Est-ce que la fonction f admet une fonction réciproque f^{-1} ?

b. Vocabulaire et notation :

fonction réciproque f⁻¹ de f est appelée la fonction exponentielle népérienne (ou la fonction exponentielle, on note $f^{-1} = \exp ou f^{-1} = e$.

Définition et propriété :

La fonction f définie par : $\begin{cases} f: \]0, +\infty[\to \mathbb{R} \\ x \mapsto f(x) = \ln x \end{cases}$ est continue et strictement croissante sur

l'intervalle $[0,+\infty[$ d'où f admet une fonction réciproque f^{-1} , on l'apelle fonction exponentielle

népérienne et on la note par : $f^{-1} = \exp \ ou \ f^{-1} = exp : \mathbb{R} \to \left]0, +\infty\right[$ $x \mapsto f^{-1}(x) = \exp(x)$

d. Conséquences:

- La fonction exponentielle népérienne $f^{-1} = \exp ou f^{-1} = e$ est continue et strictement croissante sur $\mathbb R$ et la courbe de $\mathbf f$ et $\mathbf f^{-1}$.sont symétrique par rapport à la $1^{\mathrm{i\`{e}re}}$ bissectrice (la droite d'équation $(\mathbf{D}): \mathbf{y} = \mathbf{x}$
- $\forall x \in \mathbb{R}$, $\exp(x) > 0$.
- Relation entre $f(x) = \ln(x)$ et $f^{-1}(x) = \exp(x)$ est $\exp(x) = y$ $\Leftrightarrow \begin{cases} x = \ln(y) \\ y > 0 \end{cases}$.
- On a: $\forall x \in]0, +\infty[:f^{-1} \circ f(x) = x \Leftrightarrow f^{-1}(f(x)) = x \text{ donc}]$

 $\forall x \in]0,+\infty[$, $\exp \circ \ln(x) = x \Leftrightarrow \exp(\ln(x)) = x$

• On a: $\forall x \in \mathbb{R} : f \circ f^{-1}(x) = x \Leftrightarrow f(f^{-1}(x)) = x \text{ donc } \forall x \in \mathbb{R}, \ln \circ \exp(x) = x \Leftrightarrow \ln(\exp(x)) = x$

Nouvelle notation:

On sait que : (1) : $\forall r \in \mathbb{Q}$, $r = \ln(e^r)$ d'ou

$$(1) \Leftrightarrow \forall r \in \mathbb{Q}, \ xp(r) = exp(ln(e^r)) \Leftrightarrow \forall r \in \mathbb{Q}, exp(r) = e^r$$

On obtient : $\forall r \in \mathbb{Q} : \exp(r) = e^r$ par conséquence on va prolonger ce résultat à tous les nombres réels x. d'où la nouvelle notation : $\forall x \in \mathbb{R} : \exp(x) = e^x$.

Donc:
$$f^{-1} = \exp : \mathbb{R} \to]0, +\infty[$$
$$x \mapsto f^{-1}(x) = \exp(x) = e^{x}$$

f. Propriétés:

$$\begin{cases} y = e^x \\ x \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} x = \ln y \\ y > 0 \end{cases} \text{ et } \forall x > 0 : e^{\ln x} = x \text{ et } \forall x \in \mathbb{R} : \ln \left(e^x \right) = x \text{ et } \forall x \in \mathbb{R}, e^x > 0 .$$

$$2a, b \in \mathbb{R} : a = b \Leftrightarrow e^a = e^b \text{ et } \forall a, b \in \mathbb{R} : a < b \Leftrightarrow e^a < e^b.$$

g. Exemples:

1.
$$e - 3 = 0$$

2.
$$e^{\ln(24)} = 24$$
 et $\ln(e^{-13}) = -13$.

- 3. Résoudre dans \mathbb{R} l'équation suivante $e^{x+3} = e^{2x+7}$.
- 4. Résoudre dans \mathbb{R} l'inéquation suivante : $e^{x+1} < e^{6x-2}$.
- 5. Ensemble de définition des fonctions : $f(x) = \frac{2}{e^x}$ et $g(x) = \sqrt{e^x}$

Propriétés algébriques :

a. Propriétés :

Soient a et b et x de \mathbb{R} et $r \in \mathbb{Q}$ on a :

propriétés	Exemples		propriétés	Exemples	
$e^{a+b} = e^a \times e^b$	$\mathbf{e}^7 = \mathbf{e}^4 \times \mathbf{e}^3$	1		$\left(e^{x}\right)^{3} = e^{3x}$	4
$e^{-b} = \frac{1}{e^b}$	$e^{-2} = \frac{1}{e^2}$	2	$\sqrt{e^x} = e^{\frac{1}{2}x}$	$\sqrt{e^{x-3}} = e^{\frac{1}{2}(x-3)}$	5
$e^{a-b} = \frac{e^a}{e^b}$	$e^5 = \frac{e^7}{e^2}$	3	$\sqrt[3]{e^x} = e^{\frac{1}{3}x}$	$\sqrt[3]{e^{2+2x}} = e^{\frac{1}{3}(2+2x)}$	6

b. Preuve: pour $e^{a+b} = e^a \times e^b$.

c. Remarques:

•
$$e^x \times e^x = (e^x)^2 = e^{2x}$$
 et $e^x \times e^x \times e^x = (e^x)^3 = e^{3x}$.

•
$$\underbrace{e^x \times e^x \times \times e^x}_{n} = \left(e^x\right)^n = e^{nx}$$
.

•
$$f(x) = e^{u(x)}$$
, $x \in D_f \Leftrightarrow x \in D_u$

Limites:

$\lim_{x \to -\infty} e^x = 0^+$	$\lim_{x\to +\infty} e^x = +\infty$	$\lim_{x\to 0}\frac{e^x-1}{x}=1$
$\lim_{x\to-\infty} x \times e^x = 0^-$	$\lim_{x \to -\infty} x^n \times e^x = 0 ; n \in \mathbb{N}^*$	
$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$	$\lim_{x\to+\infty}\frac{e^x}{x^n}=+\infty ; \ n\in\mathbb{N}^*$	

•
$$\lim_{x \to +\infty} \frac{e^{2x}}{x}$$
: • $\lim_{x \to +\infty} \frac{e^x + 2x}{x^3}$:

Dérivée de la fonction $f(x) = e^x$ et $f(x) = e^{u(x)}$.

Théorème:

la fonction $f(x) = e^x$ est dérivable sur \mathbb{D} et on $a : \forall x \in (e^x)' = e^x$.

b. Preuve:

Théorème:

Si la fonction u(x) est dérivable sur un intervalle I alors la fonction $f(x) = e^{u(x)}$ est dérivable sur I et sa fonction dérivable est $f'(x)\!=\!\!\left\lceil e^{u\left(x\right)}\right\rceil'\!=\!u'\left(x\right)\!e^{u\left(x\right)}$.

d. Exemple:

Soit la fonction $f(x) = e^{5x^3 + 3x}$

Remarque:

Les fonctions primitives de la fonction $g(x) = u'(x)e^{u(x)}$ sont les fonctions de la forme

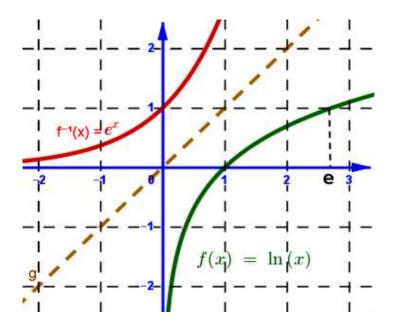
$$G(x) = e^{u(x)} + c$$
; $(c \in \mathbb{R})$.

f. Exemple:

On détermine les primitives de la fonction $f(x) = x \cdot e^{3x^2 + 1}$ sont les fonctions de la forme $F(x) = \frac{1}{6}e^{3x^2 + 1} + c$

V. Etude de la fonction $f(x) = e^x$:

Tableau de variation de f:



Fonction exponentielle de base **a** avec $a \in [0,1] \cup [1,+\infty]$:

a. Définition :

Soit $a \in]0,1[\,\cup\,]1,+\infty[$.

La fonction définie par : $\forall x > 0$, $\log_a(x) = \frac{\ln(x)}{\ln(a)}$ est continue et strictement monotone sur $]0,+\infty[$

donc elle admet une fonction réciproque f^{-1} , on l'appelle fonction exponentielle de base a et définie par :

$$f^{-1} : \mathbb{R} \to]0,+\infty[$$

 $x \mapsto f^{-1}(x) = \exp_a(x)$

b. Nouvelle notation :

• On a :

$$f^{-1}(x) = y \Leftrightarrow f(y) = x$$

$$\Leftrightarrow \log_{a}(y) = x$$

$$\Leftrightarrow \frac{\ln(y)}{\ln(a)} = x$$

$$\Leftrightarrow \ln(y) = x \ln(a)$$

$$\Leftrightarrow y = e^{x \ln(a)}$$

D'où
$$f^{-1}(x) = \exp_{a}(x) = e^{x \ln a}$$

- On prend $x = r \in \mathbb{Q}$ on $a : f^{-1}(r) = \exp_a(x) = e^{lna^r} = e^{lna^r} = a^r d$ 'où $: \exp_a(x) = a^r$.
- On prolonge cette écriture pour tous les nombres réels x de $\mathbb R$ on obtient $\forall x \in \mathbb R$, $f^{-1}(x) = e^{x lna} = a^x$.
- Conclusion :
- $\forall x \in \mathbb{R}$, $e^{x \ln a} = a^x$.
- c. Exemple:

$$5^{x} = e^{x \ln 5}$$
 et $\left(\frac{1}{5}\right)^{x} = e^{-x \ln 5}$ et $10^{x} = e^{x \ln 10}$.

d. Remarques:

- Pour tout x de \mathbb{R} on a : $\log_a(a^x) = x$.
- Pour tout x > 0 on a: $a^{\log_a(x)} = x$.
- Pour tout x de \mathbb{R} on a: $10^x = y \Leftrightarrow x = \text{Log}(y)$.

e. Conséquences :

Soit $a \in]0,1[\cup]1,+\infty[$ et la fonction $f(x) = a^x = e^{x\ln a}$

- 1. La fonction f est continue et dérivable sur l'intervalle $\mathbb R$.
- $[f(x)]' = (a^x)' = (\ln(a)) \times e^{x\ln a} = (\ln(a)) \times a^x.$
- 3. D'où le signe : $[f(x)]' = (a^x) = (\ln(a)) \times a^x$ est le signe de $\ln a$.
 - 0 < a < 1 alors $f(x) = a^x = e^{x \ln a}$ strictement croissante d'où : $\forall (x,y) \in \mathbb{R}^2 : a^x < a^y \Leftrightarrow x > y$.
 - a > 1 alors $f(x) = a^x = e^{x \ln a}$ strictement décroissante d'où : $\forall (x,y) \in \mathbb{R}^2 : a^x < a^y \Leftrightarrow x < y$.

f. Propriétés:

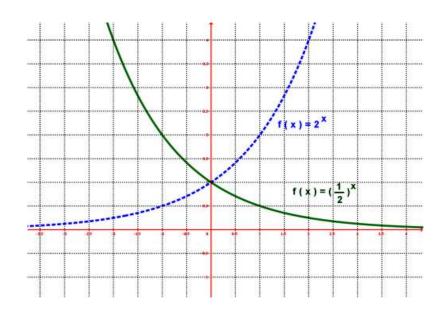
$$a\in\left]0,1\right[\,\cup\,\right]1,+\infty\left[\,\,\text{et}\,\,r\in\mathbb{Q}\,\,,\,\,\forall x,y\in\mathbb{R}\,\,\text{on a}:\right.$$

$$a^{x} \times a^{y} = a^{x+y}$$
 et $(a^{x})^{y} = a^{x \times y}$ et $\frac{1}{a^{x}} = a^{-x}$ et $\frac{a^{x}}{a^{y}} = a^{x-y}$.

g. La courbe représentative de
$$f(x) = a^x$$
 avec $a \in]0,1[\cup]1,+\infty[$.

Cas
$$0 < a < 1$$
 on prend $a = \frac{1}{2}$ donc $f(x) = \left(\frac{1}{2}\right)^x$.

Cas
$$a > 1$$
 on prend $a = 2$ donc $f(x) = 2^x$.



h. Exemple:

- 1. Ecrire la fonction $f(x) = 3^{x^3-x}$ en fonction de la fonction exponentielle népérienne.
- 2. Calculer: $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$.
- 3. Calculer : f' la fonction dérivée de f.